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Preface

The purpose of the study was to investigate the ability of a Kalman filter

to determine the relative position of satellites operating in a cluster environment.

3 The investigation is a follow-on to a study presented by Captain Michael Ward in

December 1988 and includes the addition of other forms of measurement data to the

filter and a study of the observability of the state components.

I would like to thank everyone that made thesis effort possible. My husband

who has provided me with the needed support and encouragement and at times the

necessary holds to allow me to complete this work. His ability to find computer

resources and his contacts in the computer center became invaluable when our com-3 puter and printer were hit by lightning and destroyed. I would also like to thank

the people in the graphic laboratory who sort of adopted me and allowed me to use

their abundant resources. Special thanks goes to my advisor, Dr. William Wiesel

whose knowledge and understanding were greatly appreciated when the testing of

the filter did not go according to plan and frustration was beginning to set in. The

final person I must thank is my chiropractor, Dr. Richard Teeters who was there at

3 least twice a week for me, and whose amazing hands allowed me to continue working.

I Sherrie Norton Filer
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I Abstract

The relative position determination of a cluster of satellites in a near circular

orbit was investigated in a thesis by Captain Michael L. P. Ward in December 1988.

I His investigation involved the use of dynamics based on the Clohessy-Wiltshire equa-

tions and an on-board estimator based on the U-D covariance factorization version

of the Kalman filter. The initial performance results proved favorable, with the filter

meeting the required 25 meter accuracy in all test cases. The purpose of this thesis is

to validate the test results achieved by Captain Ward and to investigate the ability of

* the filter to determine the relative position of the satellites to a higher degree when

the filter in use is not resident on that satellite. This investigation included the use of

additional measurement data from other satellites in the cluster to the Kalman filter

for processing in the update cycle. When it was determined that the measurements

were not allowing satellite 1 to update, the observability of the components of the

state vector were computed and the results discussed.

I
I
I
I
I
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INVESTIGATION OF THE OBSERVABILITY

OF A SATELLITE CLUSTER

IN A NEAR CIRCULAR ORBIT
I

I L Introduction

I The construction of a group of satellites into clusters has been under investi-

gation in the area of satellite communications for several years (5:831). A cluster

is defined as an array of two or more satellites located in a specified orbital area,

that appear and operate as one to an Earth-based user. The amount of separation

allowed between satellites is determined by its application and the accuracy of the

orbital control method. The benefits to employing this strategy are numerous. By

dividing the work load between satellites, the entire system can provide a service

greater than each individual satellite. The entire system is more reliable due to the

availability of in-orbit spares and survivability is enhanced because destroying one

* satellite does not destroy the entire system.

There are several problems that need to be addressed in order for this cluster

strategy to work. These areas include cooperative orbit control strategies, cluster

geometry and orbit determination. This thesis is concerned only with the problem of

accurately determining the relative position of each satellite. The stochastic nature

* of this position determination problem has previously been address by author John

Murdoch in several articles (7:1001-1018). His method of analysis used a least squares

algorithm, which is less appropriate than a recursive filter for on-board applications,

and his cluster size was limited to two satellites. This thesis determines the position

of up to ten satellites in a cluster and uses a recursive Kalman filter to estimate the

position of the satellites (5:1006). The approach presented in this study takes the

I1
I



pulses used by each satellite to synchronize their on-board clocks to provide input to

a Kalman filter for satellite relative position determination. This filter was designed

for satellite 1 but can easily be adjusted for use with any of the members of the

cluster by having each satellite think it is number 1. The assignment of numbers

to the satellites is an arbitrary designation since the cluster geometry is randomly

determined by Equation (3).

The proposed use of this Kalman filter is in a cluster designed as a space based

radar. In order for the radar to form a cohesive image, the relative position of each

satellite needs to be known to at least one quarter of a wavelength. At the one quarter

limit however, the resultant fogginess and loss of contrast are appreciable and can

affect the visibility of very fine detail (2:443-444). Since the military requirements

of a phased array radar may include the need for fine detail, the tolerance will be

I decreased to one tenth of a wavelength or 21.6 meters. The method used to obtain

this value is presented in Appendix A.

The study presented by Captain Michael Ward proved that the concept of

using a recursive filter to determine relative position is, under initial testing, viable

(8:1-1-4-1). The purpose of this thesis is to continue the testing of the U-D covariance

factorization Kalman filter (3:392-400), to include determining filter error statistics

and to perform an investigation of the discrepancy between the results achieved

for satellite 1 and those achieved for other members of the cluster. The measure

of performance will be the comparison of the average of the standard deviations

extracted from the eigenvalues of the position covariance matrix to the statistics

of the true error. The true error is defined as the root-mean-square of the relative

I position components computed from the estimated state provided by the filter and

the actual state provided by the truth model. For this performance investigation the

I cluster was placed in near-circular, low-earth orbit. (8:1-2).

I
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II. Background

Since this thesis is a continuation of Captain Michael Ward's work, the de-

velopment of the initial Kalman filter and truth model will be represented in less

detail. For a more detailed analysis of the filter development, the reader should

consult the Ward thesis (8). The truth model was based on an array of from one to

ten satellites orbiting the earth with the same orbital period. The truth model was

limited to the two body equations of motion and had as output the true state xt(t),

m whose components are the relative position and velocity of each satellite with respect

to a rotating reference point, and the satellites relative position measurement zt(t).

m This relative measurement data was then used by the Kalman filter to determine an

estimated state (t). The position elements of the true state were then compared to

those of the estimated state for each satellite to provide the true error of the system

* et(t). A diagram of the filter is presented in Figure 1.

I

Wt Truth 1Y e

Mdl zt Kalman i C +
m Fifter

I Figure 1. Kalman Filter

m The true error statistics were then compared to the average value of the stan-

dard deviations defined as the (/ei genvalues) of each satellite's position covariance

I
3
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matrix to determine the filter's performance. The covariance of the filter tells the

i user how well the filter thinks it is performing.

i 2.1 Truth Model

The truth model provides the filter with only relative information concerning

the position of each of the satellites in the cluster. Since the measurement data

is relative, absolute position can not be estimated. Instead the relative position

was determined with respect to a rotating reference point. The earth-centered frame

(, k k) is considered inertial and the reference frame (i, , 2) is rotating with respect

to this inertial frame at a constant angular velocity w k. The reference point is in

Sa circular orbit with a radius of R and has a circular orbital velocity of V/-. This

arrangement is shown in Figure 2.

I The position and velocity of the reference point in the inertial frame at the

initial time (t=O) are:

Sr!rr = (1)

IV = [VC (2)

i The positions of the satellites were determined at random about the reference

point but within a specified radius (rad) and the velocity vectors were determined

from the Clohessy-Wiltshire equations (10:80). These equations have the following

* form:

I
I4
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sat i

, ref pointI S
iA lll ri

I !  sS

I Figure 2. Reference System

I

I 0, - + n, * (rad) (3)

I
=i 77 (ri -r,-.1  (4)

Vi =(2A( V %I- V?I r, 2a

I
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v, , 7 r, k (6)

where ni 1. the output of a uniformly distributed random number generator with

outputs between -0.5 and 0.5 and ri is defined as the mean motion.

I The input for the Kalman filter can be formed using this position and velocity

information. The true initial state xt(t = 0) is defined as the position and velocity of

each satellite in the rotating frame. Since the coordinate frames are initially aligned,
the position of each satellite in the rotating frame is:

| roto = (r, - rref)j,. (7)

I The velocity expressed in term of relative position is:

Vi(,ot] = (vi - vref)(fizl - 0 X rloej (8)

Ward discovered in his thesis that the absolute downrange position y was

unobservable. The downrange component was removed from satellite 1 and the

state of satellites 2 through s were modified to include the relative (Ayi) rather than

the absolute downrange component, where Ay, is defined as:I
A Y, = y, - Yi (9)

with i = 2, 3, ..., s. Figures 3 and 4 show the z and y components of the state with

I and without this modification, The z component is normal to the plane of the page

and was not affected by the modification.

With this modification the state vectors in the rotating reference frame are defined

c as:

3 6I
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SFigure 3. The Original Component Representation of the ClusterI

sat I

I 
ss X l, Xi

%%

A~yi

I I/0 o--

I Figure 4. The Modified Component Representation of the Cluster
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m .X 1 AyI
Z1

Ix = il and z= (10)

i i

zi

m The relative measurement vector has the following form:

* I r,-r
zt = + Ut (1

where ut is a zero-mean, white Gaussian noise diagonal matrix with a covariance of

Rt (3:330). The values for the covariance Rt were determined by the Ward thesis

to be .01 meters. This value was probably obtained from the satellite with largest

true error calculated once the filter was tuned. Statistically, this allows the adver-

tised error in the measurements to match the actuals error in the position of the

satellites. The noise ut, represents the errors in computing the range measurements

from one satellite to the others. The major errors result from clock synchronization

differences between satellites as well as resolution limitations of the on-board clock

(7:1016). These errors were also considered to be independent from measurement

to measurement and were therefore grouped together as one error term along the

m diagonals of the measurement covariance matrix.

The solution to the Kepler problem is used to determine the future position and

velocity of each satellite. The Kepler problem is solved using the f and g equations

in terms of the eccentric anomaly E (1:219). These equations have the following

form:

m8I
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S=---(i -cos AE) (12)

g=t- V3(AE-sinAE) (13)

3 1 = - x/jfi'sin AE (14)

rro
I~ ! -- (1 - cos AE) (15)

r

3 where AE and r are defined as:

AE= E 1 -E° (16)

r = a(1 - ecosEf) (17)

The value for E! was determined through the use of a Newton iteration method

since the eccentric anomaly does not have a closed form solution (9:61). A more

detailed description of this process is presented in the Ward thesis (8:2-6-2-7). Once

the f,g,j and § variables have been computed the new position and velocity can be

* determined using the following equations:

3 r(t) = fro+ go (18)

v v(t) = ro + §vo (19)

N Once the position and velocity of each satellite in the inertial frame have been

determined, the relative position to the reference point can be found. The first step

is to determine the inertial position and velocity of the reference point. Defining 9

as w t, the position and velocity vectors are:

I 9I
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Ur 7 ef If 1z(t)- [ ]i (20)10
"-v,., sin 0"

Vr ,)= [fii :eCos0 (21)l 0
The next step is to determine the relative distance between the reference point

and each satellite in the inertial frame. Using the position and velocity of the satel-

lites, computed from the eccentric anomaly, and the position and velocity of the

reference point listed above, the relative distance becomes

I rrelffi] = [r(t) - r,.q(t)] = ri Z + r2) + r3k (22)

I
Vrel~ffs] = [v(t) - V.f (t)] = Vi1 2 + V2 + V3 k (23)

Since the inertial and rotating reference frames are no longer aligned, a co-

ordinates transformation must be performed to obtain the relative distance in the

noninertial frame. Performing this transformation yields:U
r, cos 0 + r 2 sin 0 

-rj sin 0 + r2 cos y
[7eIrotJ. 1 r_ 3 z1.Jf t j - -- (24)
Vrllr [ot] J I COS 0 + V2 sin 0 + wr X3

-vI sin9+v 2 cos6-wrl

V3

110I
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2.2 Kalman Fiter

The truth model presented in the last section provides the actual state. The

purpose of the Kalman filter is to estimate this state to a predetermined degree of

accuracy. This filter performs two functions: the first is to propagate the estimated

3 state and its covariance forward in time, and the second is to update the state and

covariance using the measurement data provided by the truth model. This cluster

system is represented in the form of a linear stochastic differential equation which

describes the state propagation, with discrete-time, noise corrupted, nonlinear inputs

as available data (8:2-10).

S2.2.1 State Propagation and Update

Since the dynamics used to propagate the state are discrete-time and linear,

3 the underlying dynamics model has the following form:

|X~t,) = (D(tj,,til)x~t,_1) + Gd(ti_1)Wd~ti_1) (25)

I where Wd is a discrete-time, zero-mean, white Gaussian noise sequence with covari-

ance equal to the dynamics driving noise Qd at time equals ti, and Gd is assumed to

be the identity matrix for an equivalent discrete-time model (3:220). The t matrix

represents the state transition matrix of the system and will be defined in more detail

later in this section. This equation leads to the standard filter propagation equation

3 for the Kalman filter defined as (3:220):

i (q ) = - (tj, ti-1);i(t+_1) (26)

3 where (t-) and (t+ ) represent the state before and after the update. For convenience,

they will be represented as (-) and (+) for the remainder of this thesis. Each

3 satellites t matrix is determined from the Clohessy-Wiltshire equations of motion,

with 77 representing the mean motion (10:80). These equations are:

1 11I



;i - 2 )- 3 T12 X = 0 (27)

+21 =0 (28)

+ = z 0 (29)

The above equations are valid for small displacements in the radial and out-of-plane

directions but remain correct for large changes in the in-track direction (10:80).

These equations of motion are integrated about the initial conditions xo,zo,yo,Yo,

etc. at t = 0 to obtain the following position and velocity solutions (8:2-12):

I =o 2 o

X(t) =- ( 0 + 3 x0 COS 77t + -- sin 77t + 4 xo + 2- o (30)

=(t)=yo - (3yo+6i7o)t+y---+6zo sin -t+-cos 7t--- (31)

z(t) = Zo cos,1t + sinnt (32)

i(t) = (2 yo + 3 17zo) sin it + io cos 71t (33)

I Xt) -3S o- 6 7 x0+ (61/x0+ 4 o) COS77t - 2io sin i (34)

i(t) =zo hinqt + oS'-t (35)

U 12
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Using these equations, the following -§ matrix can be formed for a satellite

3 with six states represented by x,y,z,i, , and i:

4 -3 cos4 0 0 (1 - cos Ifi) 0

6(sin7-0) 1 0 (Coso- 1) sin- i 0

0 0 cosi/' 0 0
7 =(36)

3 r/ siniO 0 0 cos I 2 sin ot 0

677(cos - 1) 0 0 -2 sinO -3 + 4 cos4' 0

I 0 0 -77sin Vi 0 0 cos4

where b = 77t. Since the state vectors were modified to include Ayi instead of yi,

Equation (31) was substituted into Equation (9). For i = 2, 3, .., s this modification

3 yields:

I
Ayi(±) = (6(sinik-0))(xi -xj)+Ayj+ [ (Cos 7P 1)] t - )+

(!sinOp - 3' - 77 ~ (37)

where the components on the right hand side of the equation are evaluated at the

I previous sample time. Each satellite's 4 matrix can now be formed. -1 is reduced

from a 6-by6 to a 5-by-5 by matrix with the row and column corresponding to the y

I component removed (8:2-19):

1
I
I
I 13
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I4 - 3 coso' 0 _(1 - cosk) 0

0 cos ' 0 0

-1 37 ,sin b 0 cos 2 sino 0 (38)

3 67(cos-1) 0 -2sinO -3+4cosO 0

0 -7 sin 0 0 cos

I The 'P matrices for the remaining satellites are:

I
4-3cos 0 0 z 2 (1 - cos b) 0

-6(sinO - 0) 1 0 -2(cos V - 1) - sinik+30 0

0 0 cos4O 0 0
'1

3 i sin ik 0 0 cos 2 sin O 0

677(cosk - 1) 0 0 -2 sinO -3 + 4 costV 0

0 0 -77 sin ' 0 0 cosO]
(39)

I where the sign of components in the second row have been changed except for the y

component due to the way Ay, was defined.

The overall 4 matrix for this system has non-diagonal terms due to the inter-

3 action between the y coordinates of each satellite. The off-diagonal elements are:

3 0 0 0 0 0

6(sin k- V) 0 1(coso-1) -sinV-i 0

€ 1 =(40)0 0 0 0 0

3 0 0 0 0 0

0 0 0 0 0

* The overall system has the following form:

I 14
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0, ... 0 i(+) I

't'2- 42 ... 0 i 2(+)= (41)

.joi 0 0 J .:(+)

The state is propagated from t = 0 to the desired St before any updates are

made, therefore the initial value for the state must be determined. The initial value

I for the estimated state : 0(t = 0) was set equal to the initial value from the truth

model xt(t = 0) with the position measured in kilometers and the velocity measured

I in kilometers/second.

3 Once the state has been propagated through the first time interval, it must be

updated. Since the measurements are discrete-time and nonlinear, the generic model

* for the measurements has the following form:

z(t1 ) = h[x(ti), tiJ + V(ti) (42)

where h is the filter's nonlinear estimate of the measurements and v is a white

Gaussian noise sequence of zero mean and covariance of Rt which was described

previously (4:40). This leads to the extended form of the Kalman filter update

equation (4:44):

i (+) = i(-) + K {z - h [:(-)]} (43)

where K is the gain which will be determined once the covariance has been updated,

Iand h [ i(-)] is the filter's nonlinear estimate of the satellite's relative range before

the state has been updated. The estimate of relative range has the following form:

I
I 15
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V'z z) 2 +Ay2 + (Z1 - )2 . 'h

2.2.2 Covariance Propagation and Update

I In order to obtain numerical stability with single precision, the U-D covariance

factorization version of the Kalman filter was used to propagate and update the

covariance (3:392-399). This form of the filter was necessary to guarantee the pos-

itive semi-definiteness of the computed covariance matrix and to achieve numerical

stability (8:2-15).

Double precision accuracy is obtained with single precision by factoring the

covariance into two forms, the propagation of the covariance represented by P(-)

and the updating of the covariance represented by P(+):

P(-) = U(-) D(-) U T (-) (45)

I
P(+) = U(+) D(+) UT (+) (46)

where the U matrix is upper triangular and unitary and the D matrix is diagonal.

I The first step in the algorithm is to determine the initial values for the two

matrices U and D by using the existing initial covariance Po, which is a diagonal

matrix. This initial covariance contains the steady state values determined from the

initial testing accomplished by Captain Ward, which were 1 x 106 km for position

and 1 x 10"2 ! for velocity. This initial factorization is obtained using the following

* equations:

D.. = P.. (47)

!16
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I ... (48)
Pi/D. i =n- 1, n- 2, 1

where n represent the total number of states in the system (6* s - 1). As described

previously, each satellite has six states except for satellite 1 which has five. The

I remaining columns in the matrices are computed as follows:

jj= DkIU'k (49)
k=j+l

Ui= 1 i=j (50)1[p, n=-1 iDkk Uik Ujk]/D,,i=j-1 j-2 .

Now that the initial values have been determined, the covariance can be prop-

agated to the first update time. Using the process above, the value for U(+) = U0

and D(+) = Do have been determined and are used in forming two additional

matrices. The first matrix is n-by-2n and is designated as Y(-):I
IY(-) = [4 U ( + ) I Od] (51)

where ]b has been previously defined and Gd again is an identity matrix because

I the model is an equivalent discrete-time representation of a continuous-time system

(3:337). The second matrix is a 2n-by-2n and is designated )(-):

3 b(-)= D(+) d](52)
fD+ 0 ]

The propagation begins by transposing the Y(-) matrix

3 17
I
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yT() . [a, a2 ... a, ]  (53)

and then calculating the following relationships for k = n, n -1,..., 1

I
ck = D(-) aA (cji = bj(-)a., j = 1,2,... ,2n)

I Dkk(-) = a/ch

dk = Ck/Dkk(-) (54)

)= ad j = 1,2,... k- 1

aj -- aj-UjI(-) a. j = 1,2,...,k- 1

I Now all the information has been calculated to propagate the covariance to the

new time using Equation (45). The next step is to update the covariance. Several

terms need to be defined for these calculations. Let the linearized measurement

vector Hi be defined as:

H = =Oh (55)

I Using this definition the overall system H matrix has the following form:

H1  H, 0 ... 0
H A 2  0 H2  ... 0H = (56)

H/.-I 0 0 ... H.-I

where the individual matrices for i = 1,2,...,s - 1 are defined as follows:

I 2,= [-+ 0 0 0] (57)

iI 18
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I H,=[(- ) t (-( ) 0 0 0] (58)

The H matrix is divided into individual row vectors and these are designated

as Hi. The variable R, is defined as the individual diagonal elements in the data

covariance matrix Rf, which was assumed to be equal to Rt for this thesis. Now that

all the terms have been defined the update can be computed. For i = 1, 2,.. s - 1I

* f = U()T Hi

vj = Djj(-)f j -1,2,...,n (59)

a0 =II
Then for k = 1,2,...,n

ak = ak-1 +.fkvk

I Dkk(+) = Dkk(-)a-1/ak

I bk vk

p, = -fk /ak-, (60)

Uk(+) = Uik(-)+bip j = 1,2,...,(k-1)

|bi 4-- bI + Ui(-)vA. j =1,2,...,(k- 1)

Using the values for U(+) and D(+) computed above the covariance can be

updated using Equation (46). The gain of the filter is defined as:

I
K = - (61)

with b composed of the most resent components calculated in Equation (60). The
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state update can now be determined using Equation (43). This entire process of

propagating and updating the state and covariance is repeated at a time interval

specified by the user until a final time is reached.

In summary, this chapter developed the truth model based on the two-body

equations of motion. This model consisted of the relative position and velocity com-

ponents of each satellite with respect to a rotating reference point. A U-D covariance

factorization version of the Kalman filter was used to determine the estimated po-

sition and velocity of each satellite using the measurement data provided by the

truth model. A modification to the y component of both the truth model and filter

became necessary due to observability problems. The modification included replac-

ing the absolute y, component of satellite 2 - s, with a relative tAyj component by

removing the y component from satellite 1. The state for satellite 1 was reduced

* to five components with the other members of the cluster retaining six components.

The next step will be to test the filter.

II
I
I
I
I
I
I
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I III. Initial Testing

Now that the true state and estimated state have been computed, the true

error et of the position components can be obtained. The errors in the velocity will

I not be computed since the purpose of this thesis is to determine the accuracy of the

filter's estimate of the relative position of each satellite in the cluster. The error in

I the velocity will cause the filter's computed cluster to separate and this separation

will appear as errors in the position components. Since the elements of the true

state and estimated state are of the same type, for i = 1, 2, 3,..., s the true error is

* defined as:

et = - x,,)' + ( , - yti)2 + (ii - zti)2] 2 (62)

5 where the ( -t,)
2 component is missing for satellite 1. Once the true error has been

computed it can be compared to the estimated error which is defined as the average

standard deviation of the position components computed from the covariance, which

again is a measure of how well the filter thinks it is performing. The estimated error

is computed using the following equation:

IO',, 9 = +a2+U. (63)

where ,,, , are the eigenvalues of the position covariance matrix. For Captain

Ward's thesis the true error was compared to the maximum standard deviation

I (~,,na) of the covariance, which was defined as the square root of the largest eigen-

value of the position covariance matrix. The comparison was changed initially in a

I attempt to determine if the curves for the true error could be made to match the av-

erage values of the covariance position components to a higher degree. This assumed

that the filter was performing properly, which was later discovered to be untrue. Any
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further investigations into this problem should revert back to a comparison of the

I maximum standard deviation.

1 3.1 Sample Runs

I Captain Ward tested the filter's accuracy by accomplishing single performance

runs, which involve using only one seed value in the random number generator.

During the runs, the number of satellites in the cluster was varied and different

values of dynamics driving noise covariance Qd were used to tune the filter. The

filter's relative measurement covariance R! was equal to Rt for all time and was

based on an assumed range error of .01 meters. The cluster radius was 500 meters

at a reference altitude of 1000 kilometers above the earth with an orbital period of

approximately 6300 seconds (8:3-2-3-3).

I Initially the filter's stability was verified by Captain Ward, and runs were

conducted to determine if the true error was within the required accuracy. The filter

performed within the desired accuracy in all cases, including the addition of noisy

data to the estimator. The maximum transient response of the estimated error was

periodic with a peak at every half of an orbit of approximately 2 meters and the

maximum value of the true error, which was also periodic, was approximately .01

meters for satellite 1 and close to zero for the other satellites. When noise was added

to the data, the true error as expected, increased to around .5 meters and in the

case of satellite 1 this error grew to exceed the filter's computed error statistics (a).

Through the addition of more dynamics noise in the tuning of the filter, the true error

decreased to a value below the filter's estimated error. The first task of this thesis was

I to verify the results obtained by Captain Ward. The code was obtained and it was

determined that it had been developed and run on a Digital Equipment Corporation

I VAX-11-785 with a VMS operating system. The code ran without incident, but

the results obtained were not the same as the Ward thesis. The results of satellite

1 showed the largest deviation with large peaks in the true error occurring in the

I
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initial test run which contained only two satellites and no driving noise covariance

Qd. Since the Ward thesis did not specify an update time, the code was rerun with

updates every 1 minute. The results still did not change. At this point it was

I assumed this was not the latest version of the code. Since the state of satellite 1 was

decreased to five states in the last version of the filter, this investigation searched

for errors in the computation of the estimated state for satellite 1. This proved to

be the problem. The computation of the true error for satellite 1 was accounting

for three position components, not two. Several small errors were also found in the

computation of the initial values for the UO and Do matrices and several matrices

whose values were computed in the filter were initialized to zero to insure their

values. Later in the testing it was discovered that during the measurement update,

the components of the U(-) matrix were being updated with each measurement,

but components of the U(-)T matrix were not. This made no difference with two

satellites in the cluster, but it made a large difference with 10 satellites by further

decreasing the true error. With the above changes, several of the cases presented in

the Ward thesis were validated with single performance runs containing perfect data

and were then followed by a full Monte Carlo analysis. The set-up for the Monte

Carlo analysis will be presented in more detail later in this section.

H The first test of the filter was a stability analysis. The cluster contained two

3 satellites, with the dynamics driving noise matrix Qd entries equal to zero. The

resulting graph, Figure 5, shows a well behaved filter with the filter's estimated

error decreasing and the initial true error equal to zero. The true error, as expected,

began to diverge once it had reached a near zero value because the filter assumed it

* had reached perfection and ignored the new measurement data coming in. This was

a result of an inappropriate choice of Qd = 0.

I The next test was to add driving noise to prevent the filter from locking onto

a state and ignoring the measurement data. The initial conditions used above were

rerun to match the Ward thesis with the Qd matrix entries set equal to 1 x 10- 12 km
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Figure 5. Stability AnalysisI
for position and 1 x 10"7 for velocity. Figure 6, shows the true error is still

diverging but at a slower rate, as expected. The values chosen for the Qd matrix

were apparently not large enough.

The addition of more satellites to the cluster was the next test to determine

if additional measurements would improve the true error. The cluster size was in-

creased to five satellites with all other parameters remaining constant. This again

improved the true error, but unlike the results of the Ward thesis, the estimated

error in Figure 7 did not not lock onto a state and converge to zero.

IThe final test was to increase the cluster to the maximum of 10 satellites,

with the initial covariance matrix entries set equal to their steady state values of

1 x 10' km for position and 1 x 10- 12 k- for velocity. Since the filter seemed tosee

be tuning with the addition of less driving noise, the entries of the Qd matrix were

decrease from 2 x 10- 1 km to I x 10 0 km for position and from 2 x 10- 4 -- to

1 x 10i for velocity.

Figures 8 and 9 show the true error is no longer diverging, but the filter is still
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Figure 7. Satellite One of Five with Driving Noise
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overestimating its own error. The graphs also show the error for satellite 1 differs

from that of the other satellites. This was also discovered in the Ward thesis. The

apparent explanation lies in the difference between the number of components in the

I state vector for satellite 1 and the other members of the cluster.

With the code running properly, the program was transferred to another com-

puter in order to speed computation time for the Monte Carlo simulation. The code

was put on an Elxsi Superframe with an EMBOS operating system and running an

EMS VMS operating system emulator. The code was changed in several areas to

account for system architectural differences. One obvious difference in the machine

architecture was the number of digits carried by the machine for single precision

which is used in the calculations of the estimated states. The VAX carried twelve

digibs and the Elxsi carries only nine. Since the error between the true state and

the estimated state was approximately .1 meters, this difference did not effect the

results. When the code was tested on the new computer, the results matched those

I previously obtained with a the running time reduced from 30 minutes for a case with

ten satellites to six minutes.

The next step was to test the filter in a full Monte Carlo simulation. The

* simulation was conducted by varying the seed values used by the random number

generator to determine the placement of satellites around the reference point. Ten

* different seed values were used and runs were completed with each of these seed

values. The outputs were then averaged together to obtain the final results. The

* average true error and average estimated error were computed as follows:

average true error at each time interval = ( - (64)

where k represents each element in the state vector and i represents the value com-

puted for each element at that time interval, and

I 27

I



i
I

i~1 ,o a(x,)' + a~y,)l +,,Cz), C5

average variance at each time interval = 0 .)
i=1 10.0

where again the a .,,, values are the eigenvalues of the position covariance matrix.

The results of the simulation, Figures 10 and 11, show the same pattern as the single

i sample case.

3.5 I , I , , I
..... Average Estimated Error

3 - ..... Average True Error
i .° . .

2.5 . t. : * . :. .1. "~ ... .i i
.. .. .. ..... .-.... :..

E rro r 2 " " : " : " : i "

. . . . . . . . .. ... ............ _

i ~~~~~~(meters) 1 . .
... . . .... ...
. . . . . . . . . ........... ....... .. ** . . . . . .: • . . . . . •:~

0.5 Li 0 l J - I i - n - - - I - I -

0 1 2 3 4 5 6 7 8 9 10

* Orbits

Figure 10. Satellite One's Averaged Performance

The next step in the testing of the filter was the addition of noisy data to the

i system. The data error standard deviation was initially set at .01 meters and the

driving noise entries were set equal to 2 x 10- km for position and 2 x 10 -14 forI 
evelocity.

Figure 12 shows there is too much driving noise in the system which is causing

the filter's computed error to diverge from the true error. Through additional testing

the estimated error converged when the driving noise entries were decreased to 1 x

1012 km for position and 1 x 101 A for velocity. The amount of noise in the
,c 
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Figure 12. Satellite One of Ten with .01 Meter Noisy Data
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data was also increased to a standard deviation of one meter to insure that the data

covariance in single precision was not zero km. The resulting graphs, Figures 13 and

14, show the estimated error is no longer diverging, but the true error is still too

I large.
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Figure 13. Satellite One of Ten with 1 Meter Noisy Data

Another method of decreasing the true error is by updating the filter at smaller

time intervals. The update cycle was decreased from once every five minutes to once

every three minutes. As expected, Figures 15 and 16 show that the true error has

decreased to a more acceptable level, but the filter is still poorly tuned.

I Before a Monte Carlo simulation was run for the case with noisy data, the

inability of the estimated error to converge to the true error and the increased true

error in the case of satellite 1, were investigated. The desired response of the filter

would be for the true error to match the filter's estimate of the error. The filter's

computed error in the above runs stays periodic and seems to be unable to match

the value of the true error with the information provided. A hypothesis for the cause

of this limit and the increased true error for satellite 1, is the inability of the filter
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Figure 15. Satellite One with Three Minute Updates
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to observe a necessary state from the measurements available. The hypothesis was

U tested by using the Kalman filters resident on each satellite in the cluster to feed

their measurement data back to satellite 1 for use in the update computation. In

this manner the filter on satellite 1 will have additional data on which to base its
* estimate.

The purpose of this chapter was to validate the results achieved by Ward.

The cases presented in the Ward thesis were rerun, but due to a small error in the

measurement update cycle, the results did not match those previously obtained.

The results obtained in this chapter show that the true error has improved over

that obtained by Ward and requires smaller values for the driving noise entries to

I keep from diverging. The filter's computed error has not followed this improvement

causing the filter to be poorly tuned. The next step is to investigate further this

observability or observability-like problem.
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IV. Additional Data and Observability Test

4.1 Additional Filters

One method of obtaining additional data is to use the Kalman filter described

previously on every satellite in the cluster. Then at each time interval, satellite 2

through s would send all of their measurement data to satellite 1 for inclusion in

the computation of the total estimated state and the position covariance. Satellite 1

would determine which satellite was providing the measurements. The variable used

in the calculations to determine which satellite was currently providing measurement

data as well as a clock pulse to satellite 1 was termed view. For view = 1,2,3,..., s-

1 the linearized measurement matrix becomes

h ( = [ C - X.tew+i)' + (Ay..w+i) 2 + (Z., - Z +,)] [ h, ew]
h~ = ... -/ ... (66)

L (Xiw- X8a)I + (Ay.2) + (Zmew- Z.) 2  I.ha-view .1
In order to avoid duplication of data, the number of measurements sent to

satellite 1 would decrease with each additional satellite present in the cluster. For

3 example, if there were four satellites in the cluster, satellite 1 would update the

state with clock pulses from satellite two, three, and four, satellite 2 would provide

measurement data to satellite 1 from the clock pulses it received from satellites

three and four, and finally satellite three would provide measurement data from the

3 clock pulse it received from satellite four. The maximum number of measurements

available for a ten satellite cluster is 55.

I The entire linearizaton measurement matrix will also vary depending on the

satellite that is providing the measurement data. For satellite 1, recall the overall

matrix appears as follows:

33I



H H1  0 ... 0

H fI 2  0 H 2  ... 0 (67)

H.-I 0 0 ... HI.-1

m When the satellite providing the measurements changes, this matrix remains the

same size coming into satellite 1 by using zeros as place holders. For measurements

I from satellite 2 the matrix would appear as follows:

m 0 0 0 0 ... 0

o A 2  H2  0 ... 0

m H- 0 A 3  0 H3  ... 0 (68)

O ... ... ..

L 0 H.- 2  0 0 ... H.-2J

where for i = 2,3,...,s - 1

Hm =,:[ 0 0 0] (69)

H ,= - -, " (*.- . , 0 0 0 (70)

The filter on satellite 2,3,4,..., s would have the same values as satellite 1 for

the initial covariance matrix Po, and driving noise matrix covariance Qd. Each of

these filters would run independently, but send their measurement data to satellite I

besides using the data to update their own estimate. The state vectors on each

satellite would also mimic the state vector for satellite 1 by having only five elements

in the state vector for the number corresponding to the satellite. For example, the

filter on satellite 2 would have the following overall state vector components for

I i = 3, 4,.., :
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I zi

z 2

X2= i 2  and xi Z= (71)

I y2i Vs2t

The initial testing of this new system was the placement of filters on satellites

1 and 2 in a three satellite cluster. The initial conditions were the same as those in

Figure 8. The resulting graphs, Figure 17 and Figure 18, show the filter's estimated

error has increased and it is still unable to match the true error. The additional data

had no effect on the true error for satellite 1.
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Figure 17. Satellite One with Measurements from Satellites One and Two

I The additional measurements provided to satellite 1 do not directly update

satellite one's components; they work by allow the filter to determine where the

other satellites in the cluster are to a higher degree and thereby allowing satellite 1
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Figure 18. Satellite Three with Measurements from Satellites One and Two

to determine its position to a higher degree. Figure 17 and Figure 18 demonstrate

U that this approach does not seem to be solving the problem. The next step was to

look at the filter on satellite 2 and determine its performance. The filter on this

satellite demonstrated the same pattern as that seen with satellite 1 by not being
able to lock onto its own state to the same degree that it locks onto other members

of the cluster. This would seem to give credence to the statement that the change in

* the true error is due to the difference in the number of elements in the state vector

between the satellite the active filter is residing and the other satellites in the cluster.

I In order to determine what information the measurements were providing to

the filter, the value of each state position component error was plotted against this

I same error after the last update of that time interval for a one filter system. The

* component error is defined as:
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e [] (72)

Figure 19 and Figure 20 show the results of this test for satellite 1 in a ten

satellite cluster. The graphs show the value of the error changes very little after the

update and in some cases the error after the update has increased.
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Figure 19. Estimated Minus True x Component Values

m This same test was performed for satellite 2. The resulting graphs, Figure 21

and Figure 22, show the value of the component error is decreasing after the update

as expected.

All of the other members of the cluster showed results similar to those of

satellite 2. The value of the gain was checked to insure it was not zero and thereby

not allowing satellite 1 to update. The opposite situation was found. The update

values for the components of satellite 1 are higher than the update values for satellite

l 2. Since the value of the filter's internally computed state component is initially
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Figure 20. Estimated Minus True z Component Values for Satellite One
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Figure 21. Estimated Minus True z Component Values for Satellite Two
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Figure 22. Estimated Minus True z Component Values for Satellite TwoI
greater than the component value from the truth model, the greater update value

is actually increasing the error in the component rather than decreasing it. The

value of the update can be lowered by decreasing the initial value of the covariance

U P0 for satellite 1, which in turn decreases the gain. With the initial entries for

the position covariance decreased from 1 x 106 km to 1 x 1017 km the case was

i rerun. The results show the gain decreased slightly for one period but then returned

to its original pattern. One possible explanation for these results is that another

component in satellite one's state vector is unobservable.

U 4.2 Observabilty

The inability of the estimated i and I components of satellite 1 to update

suggests that the z and i components of each satellites state vector may be unob-

servable, along with a component used in the propagation of i component. The first

test was to remove the z, i and components from satellite one's state vector and

i replace these components in satellites 2-s with their relative components. The same
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steps that were used to remove the y component from the system were repeated. For
I i =2, 3, ... , is

I Az - zi (73)I
Ay =y-y~ Y(74)

I A i = - ~i (75)

I For i = 1,2,3, ..., s, the new state vectors appear as follows:

Ay,

Xi=[ and xi - (76)

Ai

The 4 matrix for satellite 1 was reduced to a 2-by-2 matrix:

-= 6(77

[ 3,7sin & cos J (

The t matrix for satellite i, where i = 2,3, ..., a remains a 6-by-6 matrix with

3 the sign of the z and + components changed is:

I
I
I
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I -4 + 3cos, 0 0 -$ 1(1-cos) 0
-6(sini,- ,) 1 0 -I(coso,-1) Asin,- 2± 0

0 0 cos0' 0 0
7 =" (78)

S-3sin 0s 0

-61(cos'o -1) 0 0 2sinop -3+4cos4 0

0 0 -1?sini 0 0 cos'O

where again 0 is q/6t, and St is the sampling time. The off-diagonal matrix @i has

additional terms due to the removal of term.

0 0I6(sin) - 1)

0 0

671(cos 0 - 1) -2 sinO

* 0 0

The overall I matrix has the same form that was presented previously with the

tj and oti matrices reduced from 5-by-5 and 6-by-5 to 2-by-2 and 6-by-2 matrices

respectively.

This system of state components was tested with the same conditions as those

present in Figure 8. The resulting graphs, Figure 23 and Figure 24, show a large in-

crease in the true error for all of the states. The filter's estimated error has remained

very small and is represented by the dark line at the bottom of the graphs.

Since the state vector for satellite 1 contains only the z position component

and still contains large values for the true error, the most likely cause of the large

error was the removal of the r component from the state vectors. This was shown

I even more clearly when the j component was put back into the propagation of i and
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I Figure 23. Satellite One with y, z, i and i Missing
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Figure 24. Satellite Ten Error with y, z, j and z Missing
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just the z and i components of the state vector were removed. The resulting graphs

Figure 25 and Figure 26, show satellite 1 still has the error in the z component of

its state vector and the periodic estimated error since it is not updating and being

affected by the noisy data. The results for satellites 2- s are closer to those obtained

with the z and i components remaining, but their removal has not improved the

filter's performance.
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Figure 25. Satellite One Error with z and i Components Removed

I Several other combinations of states revealed quickly that the y component is

the only state that is obviously unobservable. Since the error in the system depends

I on the position in the orbit, the error defined as the estimated state minus the true

state of the system was computed by propagating the state vectors back to t = 0

after every propagation interval. The state is propagated backward in time by using

the inverse of the -t matrix in the following manner:

XO(+) = -'x(+) (80)
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Figure 26. Satellite Ten Error with z and i Components RemovedI
To insure the error propagating backwards remained comparable to the forward error,

the state vectors were propagated backwards in same number of steps as it had been

propagated forward in time through the use of a counter. The results of this test

proved interesting. The conditions used for the run were a two-satellite cluster with

the Qd matrix entries set equal to 1 x 10"0 km for position and 1 x I0-'5 n for
sec

velocity, five minute update cycles and no noise added to the measurement data.

The resulting graphs, Figures 27 - 36, are the exact opposites of each other.

The results of these graphs again indicate the filter cannot observe some or all

of the components of the state vector, but it can see linear combinations. The linear

combination of a two satellite cluster seems to be the sum of the components rather

I than their difference. This is the opposite of what was expected.

An observability test was performed to determine if one or more of the eigen-

values were small enough that the associated states can be considered unobservable.

The observability test was to calculate the observability Gramian matrix, which has

a discrete time representation represented by the following equation (3:243):
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Figure 28. Satellite Two Estimated Minus True x Component Values
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Figure 29. Satellite One Estimated Minus True z Component Values
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Figure 30. Satellite Two Estimated Minus True z Component Values
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Figure 33. Satellite One Estimated Minus True Component Values
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Figure 37. Satellite Two Estimated Minus True Ay Component Values

I
MD(O,N) I Z T(i, 0)HT()RilH(i)4(i,O) (81)

i--1

5 The eigenvalues of the Gramian at different points along the orbit were computed to

determine if there was a group of small values that would indicate unobservability.

I The results of this test showed that no eigenvalue was absolutely zero which would

imply that the covariance of that component in the state vector was definitely ap-

proaching infinity, but the spread of the eigenvalue exponents made all but three

of the values untrustworthy. See Appendix B for the exact values. The test was

rerun with the measurements and 4 matrix in double precision to attempt to get

more accurate results. Even in double precision where the confidence in the val-

ues obtained reaches eight decimal places, the eigenvalues obtained still exceeded

this spread and again the results imply that only three states can be accurately de-

termined. The numerical stability of the matrix was determined by computing its

I condition number(3:300). The condition number of a matrix is defined as:
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k(A)= O'max (82)

I where a and ,i, are the maximum and minimum eigenvalues of ATA. When the

condition number for the observation Gramian matrix was computed, the maximum

and minimum eigenvalues were on the order of 1025 and 10- , which results in a

condition number of 1016. Studies show numerical difficulties will be experienced as

the condition number approaches 10N where N is the number of significant figures,

which for this study was 16. The final conclusion resulting from the observability test

is that the filter is ill-conditioned and eight of the states are essentially unobservable

since they cannot be determined by the filter and are grouped together as very small

I numbers.

I
U
I
I
I
I
I
I
I
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V. Conclusion

The U-D factorization filter under initial testing met the required accuracy in

all the test cases. This initial testing however, did reveal the performance of the filter

3 was different for the satellite with the functioning filter, which was satellite 1 for this

study. Under additional testing, this discrepancy was discovered to be caused by

3 the inability of the filter to correctly update the components of the state vector for

satellite 1. Additional measurements were sent to the filter residing on satellite 1

but these measurements failed to provide satellite 1 with the necessary information

required to update its position components. Observability checks revealed none of

the states were definitely unobservable, but eight of the position components were

small enough that they could be considered essentially unobservable. Even though

the filter has the most difficult time determining the position of satellite 1, the

inability of the estimated error to approach the value of the true error for all of

the satellites reveals the filter cannot accurately determine the position of any of

3 the satellites in the cluster. Currently, the relative measurement data provided to

the filter through the use of the onboard clocks does not supply the filter with the

3 necessary information to determine the relative position from a moving reference

point represented by Figure 38.

I The true error of the filter is within the required accuracy due to initial values

given to the standard deviation of the covariance. This is an artificial means of

I keeping the true error low. The filter is updating the components it can observe

and leaving the remaining states near their steady state values. These steady state

values are accurate enough for testing against a truth model based on the two-body

equations of motion, but if the filter was placed in an actual space environment with

many more disturbance, the inability of the filter to update several of the states

3 would cause the filter to diverge from the true position of the satellites beyond the

allowable accuracy.
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I Figure 38. Satellite Cluster Measurement Data and Required Position Determina-
tionI

With the results obtained from this study, it is obvious the filter is not func-

I tioning properly. Since observability checks indicate a large number of the states

are essentially unobservable, the development and arrangement system needs to be

re-examined from the beginning. Two recommendations for improving the filter

3 include changing the units on the position and velocity components so that their

exponential values are closer together and redefining the z component of satellite

1. The first recommendation will reduce the spread of the steady state covariance

values which in turn may provide for a more numerically stable system. The second

* recommendation is to force the z component of satellite 1 to be in the reference orbit
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which will force that component to become observable. If these adjustments do not

I improve the results it may also become necessary to redefine the system to include

only relative state components rather than absolute components.I

I
I
I
I

I
I
I
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Appendix A. Satellite True Error Accuracy Requirements

A.I Introduction

This appendix outlines the procedure used to determine the accuracy require-

Iments for the Kalman filter. These requirements are used to determine if the esti-

mated position of the satellite is within the required accuracy for a receiver on the

Iground to obtain a cohesive radar image.

I A.2 Accuracy Requirements

As stated in the introduction to this thesis, the accuracy of the filter has been

decreased from one quarter of a radar wavelength to one tenth of a radar wavelength

to insure the image is clear. The maximum wavelength is a function of the size of

the antenna.

According to the problem description, the cluster consists of ten satellites at

an altitude of 1000 km. Assuming each satellite has a ground coverage radius of

Iapproximately 480 km, the angle subtended at the satellite by the ground is defined

* as (8:A-1)

*tan() 0 480) (83)

This arrangement is shown in Figure 39. Defining the angle 0 as the 3-dB beamwidth

and solving for this angle yields

I B = 2tan-'( 480 .895 radians or 51.2820 (84)

The gain of the system using the value for the 3-dB beamwidth in degrees is

(6:86):
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480 km

I 1000 km ground coverage

sati 2

I Figure 39. Angle Subtended at the Satellite by the Ground

I
v(75v

G =11.61 (85)

where 17 is defined as the antenna efficiency and has an assumed value of 55 percent.

If the conservative estimate is made that the overall gain of the cluster is just

the multiple of the individual gains then (8:A-1):

GTOT = 10 x G = 116.10 (86)

The radar wavelength can then be found by

I GToT = 17(4A (87)
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where A is the area of the satellite cluster defined as r(radius of the cluster)2 .

Rearranging the equation and solving for A yields

A = 2-rr( G7) (88)GToT

For the study presented in this thesis, the radius of the cluster was .5km,

which when used in the preceding equation yields the following values of the required

accuracy of the system:

I A = 216.23m (89)

I
= 21.6m (90)

I
I
I
I
I
I
I

I
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Appendix B. Observation Matrix Eigenvalue Analysis

B. 1 Introduction

This appendix provides the actual values obtained during the eigenvalue anal-

Iysis of the observability Gramian. The initial conditions for the test case were five

minute updates, steady-state covariance, no noisy data, perfect initial conditions,

and driving noise entries equal to 1 x 0-km for position and 1 x 10-1 k, for

velocity. The filter was allowed to run for three orbits before the analysis was per-

Iformed to insure that the results were not seriously impacted by the initial transients

in the system.

B.2 Eigenvalue Analysis

The eigenvalue analysis was determined first for the U-D factored form of the

filter used throughout this thesis. A second filter used to validate the results and

check the programming of the first filter was coded using the standard Kalman filter

propagation covariance Equation (91) and the extended covariance update Equation

(92) with the entire filter in double precision. If the factorization is correct the two

Iresults should closely match and validate the conclusion obtained in this thesis.

P(-) = .IP(+$' + GdQdG (91)

I
1 P(+) = P(-) - KHP(-) (92)

where K is defined asI
K = P(-)HT [HP(-)HT + R]- (93)
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The covariance values from each of the filters were checked against each other in

a two-satellite cluster and they matched. With the results of the new filter verified the

observability Gramian was computed. The resulting eigenvalues for the observability

Gramian in a two satellite cluster running for three orbital periods were as follows:

U -. 246 x 10- 9  -. 265 x 10-12"

-. 183 x 10 0 -. 522 x 10- 14

-. 373 x 10- 14  -. 295 x 10 -14

-. 140 x I0- " -. 148 x 10- 20

.209 x 10- '6 -. 148 x 10- 20

U - D filter .842 x 10-14 and Standard Filter .228 x 10- i  (94)

.710 x 10- 12 .689 x 10- 11

.591 x 10- 10 -.743 x 10"

.903 x 104 .903 x 104

1 .414 x 107 .414 x 107

.717 x 107 .717 x 107

The test run for the first filter indicates that the first eight eigenvalues are

outside the eight decimal place limit from the maximum exponential value that can

be trusted with double precision accuracy. The last three values are the only values

I that are within this limit. These results were validated with the second filter. The

agreement and accuracy of the last three eigenvalues indicates that these are the

only states that the filter can accurately represent. Since the first eight eigenvalues

are very small they can be considered essentially zero and represent the (essentially)

unobservable states.
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